é ,ch00.5920 Page xvii Wednesday, December 4, 2002 12:43 PM

*

Preface

Welcome to ActionScript for Flash MX: The Definitive Guide, Second Edition! This
edition sports massive changes from the first edition, with hundreds of pages of new
material and exhaustive rewrites that bring old material up to date with best prac-
tices for Flash MX. I hope you’re as excited to read it as I was to write it!

Like the first edition, this book teaches ActionScript from the ground up, covering
both basic concepts and advanced usage, but with a special focus on Macromedia
Flash MX techniques. In Part I, we’ll explore ActionScript fundamentals—from vari-
ables and movie clip control to advanced topics such as objects, classes, and server
communication. In Part II, the Language Reference, we’ll cover every object, class,
property, method, and event handler in the core ActionScript language. You’'ll use
the Language Reference regularly to learn new things and remind yourself of the
things you always forget, so keep this book on your desk, not on your shelf!

Though ActionScript’s complexity has increased in Flash MX, you do not have to be
a programmer to read this book. I have continued to be mindful of the beginner
throughout this edition. The text moves pretty quickly, but a prior knowledge of
programming is not required to read it. All you need is experience with the non-
ActionScript aspects of Flash and an eagerness to learn. Of course, if you are already
a programmer, so much the better; you’ll be applying your code-junkie skills to
ActionScript in no time. To make the transition to Flash easier for experienced pro-
grammers, I’ve made a special effort to draw helpful analogies to languages such as
JavaScript, Java, and C.

Above all, this book truly is a Definitive Guide to ActionScript in Flash MX. It’s the
product of nearly four years of research, thousands of emails to Macromedia employ-
ees, and feedback from users of all levels. I hope that it is self-evident that I've suf-
fused the book with both my intense passion for the subject and the painfully won,
real-world experience from which you can benefit immediately. It covers Action-
Script with exhaustive authority and—thanks to a technical review by Gary Gross-
man, the creator of ActionScript—with unparalleled accuracy.

Xvii

4~ 4

*@%

é ,ch00.5920 Page xviii Wednesday, December 4, 2002 12:43 PM

*

Second Edition Quick Start

If you’re a returning first-edition reader dying to sink your teeth into this edition,
here are the highlights I recommend you start with. But don’t end your exploration
with this list. Read on to learn about many more important updates to this edition.

The following chapters in Part I, ActionScript Fundamentals, have been heavily
rewritten and enhanced. They cover some of the most exciting additions, such as
components, and meaningful changes to the way ActionScript handles events and
deals with objects.

* Chapter 9, Functions

* Chapter 10, Events and Event Handling

* Chapter 12, Objects and Classes

* Chapter 14, Movie Clip Subclasses and Components

See also the revised and new appendixes, especially:

* Appendix C, Backward Compatibility and Player Build Updates

* Appendix E, HTML Support in Text Fields

* Appendix F, Support for GET and POST

* Appendix G, Flash UI Component Summary

* Appendix H, Embedding a Flash Movie in a Web Page
The following entries in Part I, the Language Reference, are either all-new or have
been heavily revised since the first edition. For example, you’ll want to read up on
the new SharedObject object and check out the Drawing API methods added to the
MovieClip class.

* Accessibility object

* Button class

* Capabilities object

* Function class

» _global object

e #initclip and #endinitclip pragmas

* LoadVars class

* LocalConnection class

* MovieClip class (new events and the Drawing API)

* Object class

* setlnterval() and clearInterval() global functions

* SharedObject object

e Sound class

xvii | Preface

.

*@%

é ,ch00.5920 Page xix Wednesday, December 4, 2002 12:43 PM

* Stage object

* System object

* TextField class

* TextFormat class

* Listener Events for Key, Mouse, TextField, and Stage (see Table P-1)

What'’s New in Flash MX ActionScript

ActionScript evolved tremendously from Flash 5 to Flash MX (as the authoring tool is
known) and the corresponding Flash Player 6, and this book has evolved along with
it. See Table P-2 in this Preface for details on the Flash version naming conventions.

W 8
A)
Y To preview many of the new features in action, visit:
as .
N g . http://www.moock.org/webdesign/lectures/newInMX
)

Table P-1 provides a high-level overview of the major additions to ActionScript and
tells you where to find more information about each new topic in this book. Unless
otherwise stated, cross-references are to Part II, the Language Reference.

Table P-1. New features in Flash MX ActionScript

Feature For details, see...

Drawing API: draw strokes, shapes, and fills at runtime using ~ MovieClip.beginFill(), MovieClip.beginGradientFill(),

new MovieClip methods MovieClip.clear(), MovieClip.curveTo(), MovieClip.endFill(),
MovieClip.lineStyle(), MovieClip.lineTo(), MovieClip.moveTo();
“Drawing in @ Movie Clip at Runtime”in Chapter 13

Load JPEG-format images at runtime MovieClip.loadMovie(), loadMovie()

Load MP3-format sounds at runtime Sound.loadSound()

Check the length of a sound and the amount of time it has Sound.position, Sound.duration

been playing

Detect when a sound finishes playing Sound.onSoundComplete()

Create, manipulate, and format text fields at runtime The TextField class, the TextFormat class,
MovieClip.createTextField()

Mask or unmask a movie clip at runtime MovieClip.setMask()

Create movie clips from scratch at runtime MovieClip.createEmptyMovieClip()

Determine a movie clip’s depth at runtime MovieClip.getDepth()

Execute a function or method periodically setinterval(), clearinterval()

Manipulate XML, string, and array data faster due to Flash The XML class, the String class, the Array class

Player performance improvements
Store data locally (much like JavaScript cookies) The SharedObject object

Preface | xix

%

é ,ch00.5920 Page xx Wednesday, December 4, 2002 12:43 PM

Table P-1. New features in Flash MX ActionScript (continued)

Feature

Create packaged code modules with MovieClip subclasses and
components

Communicate between two Flash Players on the same com-
puter

Declare global variables

Use international characters in the Unicode character set
Define event handlers on movie clips using callback functions

Use event listeners to respond to events from any object

Add button behavior to a movie clip
Control button objects at runtime

Make content accessible to screen readers for the visually
impaired

Check the movie width and height at runtime, and reposition
movie elements when the movie is resized

Use lexical and nested function scope, or execute a function
as a method of an arbitrary object

Access Player and system information such as screen resolu-
tion, operating system, and current language

Capture keyboard and mouse input events with a centralized
input API

Load variables using an intuitive variable loading class rather
than the loadVariables() function

Monitor the download progress of XML or loading variables
Control the tab order for buttons, text fields, and movie clips

Turn off the hand cursor for buttons

Add getter/setter properties to an object, and receive notifi-
cation when a property changes

For details, see...

#initclip, #tendinitclip, Object.registerClass(),
attachMovie(); Chapter 14

The LocalConnection class

_global; “Movie Clip Variables and Global Variables” in
Chapter2

“The String Type” in Chapter 4, Appendix C
Chapter 10

Chapter 10 and Key.addlListener(), Mouse.addListener(),
Stage.addListener(), Selection.addListener(),
TextField.addListener()

“Using Movie Clips as Buttons” in Chapter 13
The Button class

The Accessibility object
Stage.height, Stage.width, Stage.onResize()

Function.call(), Function.apply(); “The Scope Chain” in
Chapter 2; “Function Scope” in Chapter 9

The Capabilities object
The Key object, the Mouse object
The LoadVars class

XML.getBytesLoaded(), LoadVars.getBytesLoaded()

TextField.tabIndex, Button.tabIndex,
MovieClip.tabIndex

Button.useHandCursor,
MovieClip.useHandCursor

Object.addPraperty(), Object.watch()

What’s New in the Second Edition

The second edition of ActionScript for Flash MX: The Definitive Guide is not merely a
“tack-on” update to the first edition (which was titled ActionScript: The Definitive
Guide). The entire text has been revised and restructured to highlight the latest Flash
MX ActionScript features. Nearly every paragraph has been updated, and 400 pages
have been added to cover ActionScript’s new capabilities. Legacy descriptions of
Flash 4 ActionScript syntax have been moved from the body of the book to

xx | Preface

%

é ,ch00.5920 Page xxi Wednesday, December 4, 2002 12:43 PM

*

Appendix C or online technotes. We made this choice to keep the book streamlined,
although it is still considerably beefier than the first edition. By the time you read
this, Flash Player 6 will be nearly ubiquitous, so it doesn’t make sense to cover Flash
4 in detail anymore. We cover enough of it to help you understand and upgrade any
legacy code you may own or encounter. We've also paid close attention to changes
between Flash 5 and Flash 6 to help you understand the new paradigms and upgrade
legacy code. The legacy code examples from the first edition will all remain available
at http://www.moock.org/asdg/codedepot.

Updated Code Examples

All code examples from the first edition have been rewritten to use Flash MX syntax
and best practices. For example:

* The quiz samples now use callback functions—rather than Flash 5—style on()
handlers—for button event handlers.

* Text fields that were formerly drawn in the authoring tool are now generated
programmatically with createTextField().

* Classes are defined on _global (the new property that holds global variables)
* The object-oriented LoadVars class is used instead of the older loadVariables()
global function.

Likewise, dozens of new Flash MX-specific examples have been added. Here are just
a few of the interesting ones:

* A completely code-based, object-oriented quiz, downloadable from the online
Code Depot (described later in this Preface)

* A configurable text ticker (see TextField.hscroll)

* An array-to-table converter (see TextFormat.tabStops)

* A sound preloader (see Sound.getBytesLoaded())

Hundreds of Tweaks

Subtle details have been added throughout this book to augment the first edition’s
content. Here are just a few of the hundreds of tweaks made:

* MovieClip. x discusses twips (the minimum distance a clip can be moved).

* MovieClip. visible warns that button events don’t fire when visible is false.

* XML.parseXML() covers CDATA and predefined XML entities (&, <, >, ", and ")
at length.

* MovieClip.getBytesLoaded() features a list of possible return values based on the
asynchronous execution of loadMovie().

Preface | xxi

%

ﬁ

*@%

é ,ch00.5920 Page xxii Wednesday, December 4, 2002 12:43 PM

*

* Chapter 2 discusses qualified and unqualified variable references and Hungarian
notation.

* Chapter 4 explicitly contrasts null with delete and undefined.

Of course, there are plenty of not-so-subtle changes too. We’ll look at them next.

Major Revisions Since the First Edition

The following list describes the major content and structural changes in this second
edition. Note that some of these chapters were in Part I, Applied ActionScript, in the
first edition. Other material from the first edition’s Part II was redistributed else-
where in this second edition, and some content was moved to online technotes.
Despite the organizational change, rest assured that this second edition includes doz-
ens of applied examples sprinkled liberally throughout the entire book. The Lan-
guage Reference, formerly Part III in the first edition, is now Part II.

Chapter 1, A Gentle Introduction for Nonprogrammers

* Added an introduction to object-oriented programming
* Revised the quiz tutorial for Flash MX
* Revised the event handler section for Flash MX

Chapter 2, Variables

* Added recommended suffixes for variable names
* Added global variable coverage
* Added a section on loading external variables

* Added an explicit discussion of the scope chain
Chapter 3, Data and Datatypes

* Added the section “Copying, Comparing, and Passing Data” (formerly in
Chapter 15)

Chapter 4, Primitive Datatypes

* Added coverage of Unicode
Chapter 5, Operators

* Added coverage of the strict equality and instanceof operators
Chapter 6, Statements

* Added switch statement coverage
* Revised the description of with to include the scope chain

* Removed the legacy call statement (now covered in the Language Reference only)

xxii | Preface

%

ﬁ

*@%

é ,ch00.5920 Page xxiii Wednesday, December 4, 2002 12:43 PM

*

Chapter 8, Loop Statements

* Added a section on using setInterval() to execute code repeatedly
* Revised “Timeline and Clip Event Loops” to use Flash MX features (MovieClip.
createEmptyMovieClip() and the MovieClip.onEnterFrame() handler)
Chapter 9, Functions

* Added a section on the differences between function literals and the function
statement

* Added coverage of nested functions
* Revised “Function Scope” to cover lexical scope in more detail

* Revised the quiz tutorial for Flash MX
Chapter 10, Events and Event Handling

* Added complete coverage of event handler properties
* Added coverage of event listeners, new in Flash MX

* Added an in-depth discussion of scope, including Table 10-1, which compares
old scope rules to new scope rules

* Added a description of the this keyword within various handlers, including a
summary in Table 10-2

* Moved all specific button and movie clip event descriptions to the Language Ref-
erence (see also Table 10-3)

Chapter 11, Arrays

* Added coverage of the Array.sortOn() method
* Revised the quiz tutorial for Flash MX
Chapter 12, Objects and Classes
* Revised the chapter entirely to focus more squarely on the process of making a
class with methods and properties

* Added coverage of Flash MX’s super keyword, used to invoke a superclass con-
structor and its methods

* Added a formal discussion of the prototype chain

* Added a formal discussion of issues with standard superclass assignment
* Added a section on static methods and properties

* Added a description of rendering an object to screen

* Added an object-oriented programming (OOP) application template

* Added an “OOP Quick Reference” section

* Added a brief discussion of UML and design patterns

Preface | xiii

%

ﬁ

.

é ,ch00.5920 Page xxiv Wednesday, December 4, 2002 12:43 PM

*

Chapter 13, Movie Clips

* Added information on creating a blank movie clip from scratch using
MovieClip.createEmptyMovieClip()

* Added a section on drawing in a movie clip at runtime using the new Drawing
API

* Added a section on implementing button behavior for a movie clip
* Added a section on handling input focus for movie clips

* Revised (fixed) the first edition’s partially erroneous description of MovieClip.
duplicateMovieClip() depths

* Moved the list of MovieClip methods and properties to the Language Reference
* Moved the legacy Tell Target discussion to Appendix C
* Updated the clock example to use Flash MX best practices

* Removed the quiz example, which is superceded by the new downloadable OOP
quiz (the legacy version is still available online)

Chapter 14, Movie Clip Subclasses and Components (all new)

* Covers how to make movie clip subclasses (specialized types of movie clip sym-
bols associated with a class)

* Covers how to create a basic component, of which the Flash Ul Components are
a complex example

Chapter 15, Lexical Structure (previously Chapter 14)
* Revised the list of reserved words
* Removed and redistributed old Chapter 15, content as follows:
* Moved “Copying, Comparing, and Passing Data” to Chapter 3

* Moved “Bitwise Programming” to online technote at http://www.moock.org/
asdg/technotes

* Removed “Advanced Function Scope Issues” (the issue discussed was fixed
in Flash MX)

* Moved “The MovieClip Datatype” to online technote at http://www.moock.
orglasdg/technotes

Chapter 16, ActionScript Authoring Environment

* Revised the section on legacy Smart Clips to cover new Flash MX Components
architecture instead

Chapter 17, Building a Flash Form

* Revised the code example and tutorial to use LoadVars class instead of
loadVariables()

xxiv | Preface

%

ﬁ

*@%

é ,ch00.5920 Page xxv Wednesday, December 4, 2002 12:43 PM

*

Redistributed old Chapter 18, On-Screen Text Fields (in first edition only)

* Contents of the entire chapter moved to the Language Reference (under
TextField class) and to Appendix E (and augmented with substantial additions to
the TextField class)

Removed old Chapter 19, Debugging (in first edition only)
* Entire chapter moved to online technote at http://www.moock.org/asdg/technotes
Part I1, Language Reference (formerly Part III)

* Earlier in this Preface, we highlighted the major changes and additions to the
Language Reference. For a complete list of new methods, properties, classes,
objects, global functions, and directives added to the Language Reference, see
http://'www.moock.org/webdesign/lectures/newInMX. (Note that CustomActions
and LivePreview are not included in the Language Reference, as discussed next.)

What’s Not in This Book

Although this book is vast, ActionScript is vaster. It is no longer feasible to cover
every possible ActionScript topic within the confines of a single book. We made a
conscious editorial decision in this edition to omit formal coverage of the following
items (though these topics are covered in passing where relevant):

* Features used exclusively to extend the Flash MX authoring tool (e.g.,
CustomActions and LivePreview). These topics are covered in Macromedia’s
online article “Creating Components in Flash MX” at http://www.macromedia.
com/support/flash/applications/creating_comps.

* Macromedia’s library of Flash UI Components, which extend the authoring tool
beyond the core language. See Appendix G, Flash UI Component Summary, for a
summary of Flash Ul Components properties and methods. For resources that
cover Flash UI Components in depth, see “Summary” in Chapter 14.

* The Macromedia Flash Communication Server MX (Comm Server) API (e.g.,
Remote SharedObject, Camera, Microphone, NetConnection, and NetStream).
Comm Server is used to create multiuser web applications with audio and video.
See http://www.macromedia.com/software/flashcom/ for details.

* The basics of the Flash MX authoring tool. However, if you are a programmer
who is new to Flash, we give you enough hints so you can input the code exam-
ples and follow along. To learn Flash MX animation and graphic design, start
with the online help and manual; then explore the web sites listed at hitp:/
www.moock.org/moockmarks.

There is no CD in the back of the book, but all the code examples can be down-
loaded from the online Code Depot (cited later in this Preface).

Preface | xxv

%

ﬁ

*@%

é ,ch00.5920 Page xxvi Wednesday, December 4, 2002 12:43 PM

*

Undocumented ActionScript Features

The Flash development community has a knack for unearthing so-called undocu-
mented features of ActionScript—internal abilities of the language that are not offi-
cially released or sanctioned for use by Macromedia. In general, use of
undocumented features is not recommended because:

* They are not tested for external use and may therefore contain bugs or be
unstable.

* They may be removed from future versions of the language without warning.
In this book, we chose to focus on providing the best possible documentation for fea-

tures that are supported but which may be poorly documented or misdocumented.
Therefore, wholly undocumented or unsupported features are not covered unless:

* Macromedia sources have supplied or confirmed the information directly; or

* Use of the feature is so widespread that it demands discussion.

In either case, descriptions in this book of undocumented features include the
appropriate warning label in full view. This book covers the following undocu-
mented features:

» proto (asused to establish inheritance)

* ASBroadcaster (partial coverage only, in Chapter 12)

* ASSetPropFlags() (partial coverage only, in Chapter 8)
e LoadVars.decode()

e LoadVars.onData()

* Object.hasOwnProperty()

* System.showSettings()

* TextField.condenseWhite

* TextFormat.font’s multiple font abilities

* The XMLNode class

To see what the ActionScript sleuths have discovered, visit (with prudence):

http://chattyfig.figleaf.com/flashcoders-wiki/index.php ?2Undocumented%20Features

Flash Naming Conventions

With the introduction of the MX family of products, including Flash MX, Macrome-
dia abandoned a standard numeric versioning system for its Flash authoring tool.
The Flash Player, however, is still versioned numerically. Table P-2 describes the
naming conventions used in this book for Flash versions.

xxvi | Preface

%

ﬁ

*@%

é ,ch00.5920 Page xxvii Wednesday, December 4, 2002 12:43 PM

Table P-2. Flash naming conventions used in this book

Name Meaning

Flash MX The Flash MX authoring tool (as opposed to the Flash Player)

Flash Player 6 The Flash Player, version 6. The Flash Player is a browser plugin for major web browsers on
Windows and Macintosh. There are both ActiveX and Netscape-style versions of the plugin, but
they are referred to collectively as “Flash Player 6” except where noted, such as under
Accessibility in the Language Reference.

Flash Player x.0.y.0 The Flash Player, specifically, the release specified by x and y, as in Flash Player 6.0.47.0. See
capabilities.version in the Language Reference for details.

Flash 6 Short for “Flash Player 6,” used primarily in the Language Reference or wherever the distinction
between Flash MX (the authoring tool) and Flash Player 6 (the browser plugin) is irrelevant.

Flash 5 authoring tool The Flash 5 authoring tool (as opposed to the Flash Player), which came before Flash MX

Flash Player 5 The Flash Player, version 5

Flash 5 Short for “Flash Player 5,” used primarily in the Language Reference or wherever the distinction
between Flash 5 (the authoring tool) and Flash Player 5 (the browser plugin) is irrelevant.

Flash 2, Flash 3, and Flash 4 Versions of the Flash Player prior to version 5, used primarily in the Language Reference to indi-

cate which versions of Flash support the given feature.

Standalone Player A version of the Flash Player that runs directly off the local system, rather than as a web

browser plugin or ActiveX control.

Projector A self-sufficient executable that includes both a .swffile and a Standalone Player. Projectors
can be built for either the Macintosh or Windows operating system using Flash’s File — Pub-

lish feature.

What Can ActionScript Do?

ActionScript is used to create all kinds of interactive applications, typically for web-
based use. Here are just a few possibilities: an MP3 player, a multiuser drawing
application, a 3D walkthrough of a home, an online store, a message board, an
HTML editor, and the game Pac-Man. Each of these applications uses a combina-
tion of ActionScript’s capabilities, a sampling of which follows. Begin thinking about
how you can combine these techniques to build your applications.

Timeline Control

Flash movies are composed of frames residing in a linear sequence called the time-
line. Using ActionScript, we can control the playback of a movie’s timeline, play seg-
ments of a movie, display a particular frame, halt a movie’s playback, loop
animations, and synchronize animated content. Movie clips within a main movie
each have their own timeline.

Preface | xvii

é ,ch00.5920 Page xxviii Wednesday, December 4, 2002 12:43 PM

*

Interactivity

Flash movies can accept and respond to user input. Using ActionScript, we can cre-
ate interactive elements such as:

* Buttons that react to mouseclicks (e.g., a classic navigation button)

* GUI elements such as list boxes, combo boxes (a.k.a. drop-down menus), and
check boxes

* Content that animates based on mouse movements (e.g., a mouse trailer)

* Objects that can be moved via the mouse or keyboard (e.g., a car in a driving
game)

* Text fields that display information on screen or allow users to supply input to a
movie (e.g., a fill-in form)

Visual and Audio Content Control

ActionScript can be used to examine or modify the properties of the audio and visual
content in a movie. For example, we can change an object’s color and location,
reduce a sound’s volume, or set the font face of a text block. We can also modify
these properties repeatedly over time to produce unique behaviors such as animated
effects, physics-based motion, and collision detection.

Programmatic Content Generation

Using ActionScript, we can generate visual and audio content directly from a movie’s
Library or by duplicating existing content on the Stage. In Flash MX, we can use the
MovieClip class’s Drawing API, createEmptyMovieClip() method, and
createTextField() method to create graphics and text from scratch at runtime. Pro-
grammatically generated content may serve as a strictly static element—such as a
random visual pattern—or as an interactive element—such as a button in a dialog
box, an enemy spaceship in a video game, or an option in a pull-down menu.

Server Communication

One of the most common ways to extend Flash’s functionality is via communication
with some server-side application or script, such as Macromedia ColdFusion MX or
a Perl script. Although communicating with ColdFusion is largely the purview of
Macromedia Flash Remoting MX (Flash Remoting), the core ActionScript language
provides a wide variety of tools for sending information to, and receiving informa-
tion from, any server-side application or script (e.g., Java, PHP, ASP, etc.). The fol-
lowing applications all involve server communication:

xxviii | Preface

*@%

é ,ch00.5920 Page xxix Wednesday, December 4, 2002 12:43 PM

*

Link to a web page
See getURL().

Guest book
See the LoadVars and XML classes, Chapter 17, and the Code Depot, described
in the next section.

Chat application
See the XMLSocket class and the example at http://www.moock.org/chat.

Multiplayer networked game
See the XMLSocket class and http://www.moock.org/unity.

E-commerce transaction
See the LoadVars and XML classes.
Personalized site involving user registration and login
See the LoadVars and XML classes.

Detailed implementations of even this limited number of potential ActionScript
applications are beyond the scope of this book. Instead, our goal is to give you the
fundamental skills to explore the myriad other possibilities on your own. This is not
a recipe book—it’s a lesson in cooking code from scratch. What’s on the menu is up
to you.

The Code Depot

We'll encounter dozens of code samples over the upcoming chapters. To obtain rele-
vant source files and many other tutorial files not included in the book, visit the
online Code Depot, posted at:

http://www.moock.org/asdg/codedepot

The Code Depot is an evolving resource containing real-world ActionScript applica-
tions and code bases. Here’s a selected list of samples you’ll find in the Code Depot:
* A multiple-choice quiz
* A pan-and-zoom image viewer
* Text field tools, such as an array-to-table converter and a configurable text ticker
* An XML-based chat application
* A guest book application
* A custom mouse pointer and button
* An asteroids game code base
* Programmatic motion effects
* Demos of HTML text fields

Preface | xxix

ﬁ

.

é ,ch00.5920 Page xxx Wednesday, December 4, 2002 12:43 PM

Preloaders

* String manipulation

Interface widgets, such as slider bars and text scrollers

* Mouse trailers and other visual effects

Volume and sound control

Additionally, any book news, updates, technotes, and errata will be posted here.

Showcase

Practically every Flash site in existence has at least a little ActionScript in it. But some
sites have, shall we say, more than a little. Table P-3 presents a series of destinations
that should provide inspiration for your own work. See also the sites listed in
Appendix A and the author’s bookmarks at http://www.moock.org/moockmarks.

Table P-3. ActionScript Showcase

Topic URL

Experiments in design, interactivity, and scripting | http://www.yugop.com
http://www.praystation.com”
http://www.presstube.com
http://www.pitaru.com
http://www.flight404.com
http://www.bzort-12.com
http://www.benchun.net/mx3d/*
http://www.protocol7.com*
http://www.uncontrol.com™
http://flash.onego.ru*
http://www.figleaf.com/development/flash5
http://nuthing.com
http://www.deconcept.com
http://www.natzke.com

Games http://www.orisinal.com
http://www.gigablast.com
http://www.sadisticboxing.com
http://www.huihui.de
http://www.sarbakan.com
http://www.electrotank.com/games/multiuser
http://www.titoonic.dk/products/games/spider
http://content.uselab.com/acno

http://www.neave.com/webgames

xxx | Preface

%

é ,ch00.5920 Page xxxi Wednesday, December 4, 2002 12:43 PM

Table P-3. ActionScript Showcase (continued)

Topic URL

Interface, applications, and dynamic content http://www.mnbh.si.edu/africanvoices
http://www.curiousmedia.com

http://www.smallblueprinter.com
http://davindi.figleaf.com/davinci

http://host.oddcast.com
http://www.enteryourinformation.com/broadmoor/onescreen.cfm

* Downloadable .fla files provided. Otherwise, only .swf files available.

Typographical Conventions

In order to indicate the various syntactic components of ActionScript, this book uses
the following conventions:

Menu options
Menu options are shown using the — character, such as File - Open.

Constant width
Indicates code samples, clip instance names, frame labels, property names, and
variable names. Variable names often end with the suffixes shown in Table 2-1
(such as mc for variables that refer to movie clip instances). Although using
these suffixes is considered the best practice, we sometimes avoided them when
we found they made the surrounding text substantially more difficult to read.
For brevity, therefore, the preferred suffixes have sometimes been omitted.

Italic
Indicates function names, method names, class names, layer names, URLs, file-
names, and file suffixes such as .swf. In addition to being italicized, method and
function names are also followed by parentheses, such as duplicateMovieClip().

Constant width bold
Indicates text that you must enter verbatim when following a step-by-step proce-
dure. Constant width bold is also used within code examples for emphasis, such
as to highlight an important line of code in a larger example.

Constant width italic
Indicates code that you must replace with an appropriate value (e.g., your name
here). Constant width italic is also used to emphasize variable, property,
method, and function names referenced in comments within code examples.

In the Language Reference, we played around with some font conventions. The fol-
lowing conventions looked the best, while maintaining consistency with our overall
approach, so we went for them:

Preface | i

é ,ch00.5920 Page xxxii Wednesday, December 4, 2002 12:43 PM

Class-level properties are shown with both the class name and property in
constant width, because they should both be entered verbatim, as shown (e.g.,
Stage.width, Math.NaN).

Instance-level properties are shown with the class or object instance in constant
width italic, because the placeholder should be replaced by a specific instance.
The property itself is shown in constant width and should be entered as shown
(e.g., Button.tabEnabled, where Button should be replaced with a button
instance).

Method and function names, and the class or object to which they pertain, are
always shown in italics and followed by parentheses, as in MovieClip.
duplicateMovieClip(). Refer to the Language Reference, surrounding material,
and nearby examples to determine whether to include the class name literally, as
in TextField.getFontList(), or replace it with an instance name, such as ball_mc.
duplicateMovieClip().

Within the Language Reference, for brevity, we often omit the class name when
discussing a property or method of the class. For example, when discussing the
htmlText property of the TextField class, when we say “set the htmlText prop-
erty,” you should infer from context that we mean, “set the someField txt.
htmlText property, where someField txt is the identifier for your particular text

field.”

In some cases, an object property contains a reference to a method or callback
handler. It wasn’t always clear whether we should use constant width to indi-
cate that it is a property (albeit one storing a method name) or italics and paren-
theses to indicate it is a method (albeit one stored in a property). If the line
between a property referring to a method and the method itself is sometimes
blurred, forgive us. To constantly harp on the technical difference would have
made the text considerably less accessible and readable.

When summarizing properties for a class, the properties may be shown in italics,
rather than constant width, to save space. This applies only when the properties
are summarized under a Properties heading and they aren’t followed by paren-
theses, so it is clear that they’re properties and not methods.

If any or all of this is confusing now, it will be clear by the time you get to the Lan-
guage Reference, having read about objects, classes, and movie clips in Chapters 12,
13, and 14.

Pay special attention to notes and warnings set apart from the text with the follow-
ing icons:

W8

This is a tip. It contains useful information about the topic at hand,
often highlighting important concepts or best practices.

N 'ﬁ‘

"

XXXii

| Preface

%

é ,ch00.5920 Page xxxiii Wednesday, December 4, 2002 12:43 PM

4

This is a warning. It helps you solve and avoid annoying problems or
warns you of impending doom. Ignore at your own peril.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/actscript2
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments

As with the first edition, this book would be a mere shadow of itself without the
incredible contributions of Macromedia Flash MX’s engineering, quality assurance,
support, and product management teams. In particular, I can never thank Gary
Grossman enough for his critiques, guidance, and patience, not to mention writing
the Foreword. Other Macromedians who helped shape this text include: Jonathan
Gay, Jeremy Clark, Eric Wittman, Michael Williams, Pete Santangeli, Matt Woben-
smith, Ben Chun, Troy Evans, Lee Thomason, Bentley Wolfe, John Dowdell,
Rebecca Sun, Janice Pearce, Brian Dister, Henriette Cohn, Jeff Mott, Michael Mor-
ris, Deneb Meketa, Tinic Uro, Robert Tatsumi, Colm McKeon, and Mike Chambers.

This book’s editor is Bruce Epstein, who I am convinced is superhuman. His knowl-
edge of writing and programming is exceptional, and his ability to bestow that
knowledge upon a text is astonishing. I am uncommonly fortunate to be coached by
such an outstanding editor (and author in his own right).

Preface | xoxiii

%

ﬁ

*@%

é ,ch00.5920 Page xxxiv Wednesday, December 4, 2002 12:43 PM

*

.

Next, it is my honor to present the technical reviewers of this edition, all of whom
are members of Macromedia Flash MX’s engineering team: Gary Grossman, Chris
Thilgen, Gilles Drieu, Nigel Pegg, Slavik Lozben, and Michael Richards. Erica
Norton edited the first edition. Thank you, my friends, for your time and devotion.

The beta readers for this edition are all renowned Flash developers for whom I have
immense respect: Robert Penner (http://www.robertpenner.com), Dave Yang (http://
www.quantumwave.com), Branden Hall (hitp://www.waxpraxis.org), Amit Pitaru
(http://www.pitaru.com), Michael Kay (http://www.peep.org/wizard/), and Veronique
Brossier (http://www.v-ro.com). This book’s accuracy is in many cases the result of
their keen eyes.

Thanks to Tim O’Reilly for setting a standard of thoroughness, quality, and accu-
racy in everything he publishes. And thanks to O’Reilly’s Brian Sawyer, Claire
Cloutier, Glenn Bisignani, Mike Sierra, Rob Romano, Edie Freedman, Sandy Torre,
and the many copyeditors, indexers, proofreaders, and sales and marketing folks at
O’Reilly who helped bring this book to the shelves.

I owe recognition to my good friend Derek Clayton for regularly sharing his pro-
gramming expertise with me. Derek contributed the Perl code in Chapter 17, the
Java XMLSocket server in the Language Reference, and a generic flat file database sys-
tem, all available from the online Code Depot. He is also the lead developer of Unity
Socket Server, moock.org’s commercial application for creating multiuser applica-
tions in Flash (http://www.moock.org/unity).

To the Flash community: thank you for the inspiration and beauty you create. In
particular, thanks to James Patterson, Yugo Nakamura, Naoki Mitsuse, Joshua
Davis, James Baker, Marcell Mars, Phillip Torrone, Robert Reinhardt, Mark Fennell,
Josh Ulm, Darrel Plant, Todd Purgason, John Nack, Jason Krogh, Hillman Curtis,
Glenn Thomas, Hoss Gifford, Manuel Clement, Andreas Heim, Robert Hodgin,
Margaret Carlson, Erik Natzke, Andries Odendaal, James Tindall, Jon Williams,
Ferry Halim, Jobe Makar, Jared Tarbell, Geoff Stearns, Paul Szypula, Lynda Wein-
man, the beta readers listed earlier, and whomever I've inevitably omitted.

Many thanks and much love to my wife, Wendy Schaffer, to my parents, and to fam-
ily and friends. Hopefully this edition wasn’t as draining as the first.

And lastly I'd like to thank you, the reader, for taking the time to read this book. I
hope it helps to make my passion your own.

—Colin Moock
Toronto, Canada
December 2002

xxxiv | Preface

ﬁ

*@%

