
402
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 19

19
Debugging

So far we’ve explored a lot of techniques and also the syntax to accomplish many
goals. Inevitably, however, when you begin writing your own ActionScript, you’ll
encounter innumerable errors (especially at first when you are still making syntax
and conceptual errors). Do not lose heart! Even experienced programmers spend a
lot of time debugging (fixing broken code).

It is important that you test your product thoroughly so that you can find the bugs
in the first place. This means testing in various browser brands and versions of
those brands on all platforms that you intend to support. Test under different fla-
vors of Windows and, if applicable, older versions of the Flash plug-in, which you
can find at:

http://www.macromedia.com/support/flash/ts/documents/oldplayers.htm

A discussion of testing and quality assurance (QA) is beyond the scope of this
book. Suffice to say that you should have a testing and QA process in place and a
bug report form on which you can receive reports with sufficient detail (such as
the platform, browser version, Flash plug-in version, and reproducible steps) for
you to reproduce the error, which is the first step toward fixing it.

Debugging is an essential part of programming and what sets great programmers
apart from average ones. Beginners are often happy if a bug that was seen earlier
inexplicably disappears. Experienced programmers know that the bug will
undoubtedly resurface at the most inopportune time, and although it is intermit-
tent (perhaps especially so), it warrants further investigation. On the other hand,
inexperienced programmers tend to shy away from error messages or be unnerved
by obvious errors, whereas skilled programmers rely heavily on error messages
and know that easily reproducible errors are the easiest kind to fix.

,ch19.17636 Page 402 Monday, April 16, 2001 1:55 PM

Debugging Tools 403

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Successful debugging requires logical, disciplined investigative skills and a decent
understanding of troubleshooting tools. In this chapter, we’ll briefly consider the
basics of debugging tools and some general techniques for solving code prob-
lems. Remember that debugging is characterized by the systematic challenging of
our assumptions. Any given problem is often caused by some other problem
upstream (i.e., the disease). We’ll use the debugging tools to investigate whether
things are in fact operating as designed, and that will lead to an understanding and
resolution of the manifest bug (i.e., the symptom).

Debugging Tools
ActionScript comes equipped with the following debugging tools:

• The trace() function

• The List Variables command

• The List Objects command

• The Bandwidth Profiler

• The Debugger

All of these tools are used in Test Movie mode. To enter Test Movie mode, we
export a movie from the authoring tool using Control ➝ Test Movie.

In addition to these formal debugging tools, Flash also sends error messages to the
Output window when a movie is exported or Check Syntax is performed. (Check
Syntax is a command listed under the arrow button in the top right of the Actions
panel.) Error messages often identify the exact cause of a problem down to the
problematic line number in a block of source code. Comprehensive explanations
for the various error messages are provided in Macromedia’s ActionScript Refer-
ence Guide.

Note that not all bugs cause error messages. For example, a calculation that yields
the wrong result is a bug even if it doesn’t crash your browser. Also note that
there are two types of error messages, so-called compile-time error messages that
occur when you try to export your scripts and so-called runtime error messages
that don’t occur until you run your Flash movie and reach the point that causes
the error. Compile-time errors indicate some sort of syntax problem such as a
missing parenthesis or unclosed quotation. Refer to Part III, Language Reference,
for the exact syntax needed for each command, and refer to Chapter 14, Lexical
Structure, for an explanation of proper ActionScript syntax.

Runtime errors can take a wide variety of forms and may not indicate a problem
with the current code under examination but rather may be caused by using the
incorrect result of an earlier operation. For example, suppose you try to use the

,ch19.17636 Page 403 Monday, April 16, 2001 1:55 PM

404 Chapter 19: Debugging

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

values received back from a loadVariables() command sent to a web server. If the
Perl script responding to the command didn’t supply the correct data in the cor-
rect format, you need to correct the Perl script. Your Flash script may be perfectly
correct and yet fail because it received incorrect input.

Which brings up an important technique—defensive programming. You can avoid
a lot of errors and potential errors by always checking for potential problematic
conditions, which is known as error checking (or sometimes data validation if it
pertains to user input). For example, before trying to display the questions of a
quiz, you might check that those questions loaded properly. You might also check
each question to be sure it’s in the correct format for display. If the provided data
was improperly entered, you should display an appropriate error message that
allows the programmer or the user to take corrective action.

The trace() Function

In ActionScript, one of the most effective tools for identifying the source of a bug
is also one of the simplest—the trace() function. As we’ve seen throughout this
book, trace() sends the value of an expression to the Output window in Test
Movie mode. For example, if we add the following code to a movie:

trace("hello world");

the text “hello world” appears in the Output window. Similarly, here we trace()
the value of a variable:

var x = 5;
trace(x); // Displays 5 in the Output window

Using trace() we may check the status of variables, properties, and objects, and
we may track the progression of our code. Often by confirming the result of each
operation in a script, we can figure out where a problem lies. For example, sup-
pose a function is supposed to return a value but we find, using the trace() com-
mand, that the return value is undefined (i.e., it prints out as nothing in the
Output window). We’d know that we have to examine the function in more detail
and make sure that it is properly using a return command to pass back a mean-
ingful value.

The List Variables Command

When a movie is running in Test Movie mode, we can check the value of current
variables defined in the movie via the Debug ➝ List Variables command. List Vari-
ables tells us the name and location of all the variables currently active in our
movie and also reports their values. Because functions and movie clips are stored
in variables, the List Variables command also shows us the functions and movie
clips of a movie.

,ch19.17636 Page 404 Monday, April 16, 2001 1:55 PM

Debugging Tools 405

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 19-1 shows sample output from List Variables. Notice that the variable
rate is shown as declared but undefined. This subtlety is often difficult to detect
with trace() because trace() converts the value undefined to the empty string
("").

Note that both trace() and the List Variables command give only a snapshot in
time. Often, you’ll want to monitor the value of a variable over time or check it
repeatedly. The Debugger (discussed later) allows you to track the value of a vari-
able as it changes.

The List Objects Command

The List Objects command produces a catalog of text, shapes, graphics, and movie
clips defined in a movie. To execute it, select Debug ➝ List Objects while in Test
Movie mode. Note that List Objects does not include a list of data objects
(instances of a class) in a program; those are reported by List Variables.

Example 19-2 shows some sample output from List Objects. Notice that editable
text fields are clearly labeled and that automatically named movie clip instances
are revealed (e.g., _level0.instance1).

Example 19-1. List Variables Sample Output

Level #0:
 Variable _level0.$version = "WIN 5,0,30,0"
 Variable _level0.calcDist = [function]
 Variable _level0.deltaX = 194
 Variable _level0.deltaY = 179
 Variable _level0.rate = undefined
 Variable _level0.dist = 264
Movie Clip: Target="_level0.clip1"
Movie Clip: Target="_level0.clip2"

Example 19-2. List Objects Sample Output

Level #0: Frame=1
 Shape:
 Text: Value = "variables functions clip events startDrag stopDrag Math"
 Text: Value = "this movie demonstrates a little math, variables, movie clip events"
 Text: Value = "draggable distance"
 Text: Value = "calculator"
 Movie Clip: Frame=1 Target="_level0.instance1"
 Shape:
 Text: Value = "distance between clipstotal:horizontal:vertical:"
 Edit Text: Variable=_level0.dist Text="222"
 Edit Text: Variable=_level0.deltaX Text="174"
 Edit Text: Variable=_level0.deltaY Text="138"
 Movie Clip: Frame=1 Target="_level0.obj1"
 Shape:
 Movie Clip: Frame=1 Target="_level0.obj2"
 Shape:

,ch19.17636 Page 405 Monday, April 16, 2001 1:55 PM

406 Chapter 19: Debugging

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Again, List Objects provides only a snapshot in time. You need to run it again to
get the current value of objects whenever they may have changed.

The Bandwidth Profiler

The Bandwidth Profiler is used to simulate movie download at various modem
speeds. Using the Bandwidth Profiler, we may gauge the performance of a movie,
test preloading code, and track the position of the main movie’s playhead during
movie playback. Here’s how to turn the Bandwidth Profiler on:

1. While in Test Movie mode, select View ➝ Bandwidth Profiler.

2. Under the Debug menu, select the desired download rate.

3. To simulate the download of a movie at that rate, select View ➝ Show
Streaming.

There are many things that can affect Flash performance, such as the assets in use
and the rendering demands on the Player. For example, using large bitmaps, ren-
dering complex shapes with many curves, and excessive use of alpha channels
can all degrade performance. Asset downloading and rendering times usually
dwarf the bandwidth and processor time required for ActionScript to execute. That
said, ActionScript is generally much slower than compiled languages such as C.

From an ActionScript perspective, the most time-consuming operations are those
that either must wait for data to be uploaded or downloaded or those that are per-
formed repetitively (such as examining a large array).

Displaying items in the Output window is very slow compared to
“invisible” operations in ActionScript. If a simple movie seems exces-
sively choppy, try disabling all trace() statements, or play the movie
outside Test Movie mode.

A discussion of writing optimized code is beyond the scope of this book, but
some quick tips should suffice:

• Don’t perform an operation repeatedly within a loop if it can be performed
once outside of a loop with no loss of functionality.

• Don’t wait in a loop for some event to occur. The event may take a long time
or may never occur, causing your performance to slow or your application to
lock up entirely. Instead, rely on event handlers, such as on (load) to be trig-
gered when an event occurs or completes.

,ch19.17636 Page 406 Monday, April 16, 2001 1:55 PM

Debugging Tools 407

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• Generalize your code wherever possible (perhaps even use Smart Clips to do
so). This reduces the size of the code that needs to be downloaded. For exam-
ple, instead of writing two nearly identical routines that are each 5 KB long, you
can save 5 KB by writing one generalized routine and calling it twice with dif-
ferent parameters. (Generalizing code is explained in Chapter 9, Functions, and
Smart Clips are explained in Chapter 16, ActionScript Authoring Environment).

• If you’re using the Flash 5 Player and optimized ActionScript performance is
critical to your project, try using old-style Flash 4 syntax instead of newer tech-
niques. In Flash 5, certain operations are faster when phrased with Flash 4
syntax. For example, Flash 4’s substring() function is faster than Flash 5’s
substring() and substr() methods, and Flash 4’s Tell Target is faster than Flash
5’s dot notation.

• Export your movies without trace() statements by selecting Publish Settings
➝ Flash ➝ Options ➝ Omit Trace Actions.

• Remember that removing and reattaching a clip is more costly than moving an
existing one; reuse your movie assets whenever possible.

• For a list of general Flash optimization techniques, see http://www.macromedia.
com/support/flash/publishexport/stream_optimize/stream_optimize.html.

The Debugger

The Debugger is a highly useful tool that gives us organized access to the values
of properties, objects, and variables in a movie and even allows us to change vari-
able values at runtime.

To enable the Debugger, select Control ➝ Debug Movie in the Flash authoring tool
(not in Test Movie mode). You may also use the Debugger in a web browser, pro-
vided that:

• The movie being viewed was originally exported with debugging permitted.

• The Player being used to view the movie is a debugging Player.

• The Flash authoring tool is running when you attempt to debug.

To export a movie with in-browser debugging permitted, select File ➝ Publish Set-
tings ➝ Flash ➝ Debugging Permitted, then optionally provide a password to pre-
vent prying eyes from snooping around your code. To install a debugging Player
in your browser, use the installers provided in the /Players/Debug/ folder where
you installed Flash on your hard drive. To enable debugging while viewing a
movie, right-click in Windows (Ctrl-click on Macintosh) on the movie and select
Debugger.

,ch19.17636 Page 407 Monday, April 16, 2001 1:55 PM

408 Chapter 19: Debugging

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Not all versions of the Flash Player have a corresponding debugging
Player. Check Macromedia’s support site for the newest versions of
the debugging Player, http://www.macromedia.com/support/flash.

The top half of the Debugger (the Display List) shows the movie clip hierarchy of
the movie. To inspect the properties and variables of a specific movie clip, select it
in the Display List. The bottom half of the Debugger contains three tabs, Proper-
ties, Variables, and Watch, which update dynamically to show the properties and
variables for the selected clip. To set the value of any property or variable, double-
click its value and enter the new data. To single out one or more items for conve-
nient scrutiny, select them in the Properties or Variables tab, then choose Add
Watch from the arrow button in the upper-right corner of the Debugger. All
“watched” variables are added to the Watch tab (this lets us view variables in dif-
ferent movie clips simultaneously).

For more information about the mechanics of using the Flash Debugger, consult
Macromedia’s thorough documentation under “Troubleshooting ActionScript” in
the ActionScript Reference Guide. If you’ve lost your Reference Guide, remember
that it’s available on Macromedia’s web site at http://www.macromedia.com/
support/flash and also under the Help menu in the Flash authoring tool.

Debugging Methodology
Let’s take a quick look at some techniques involved in code debugging. Debug-
ging can be broken into three stages:

• Recognizing and reproducing a problem

• Identifying the source of the problem

• Fixing the problem

Recognizing Bugs

Very often, we recognize code problems as part of the active process of program-
ming. That is, we write some code, test our movie, and find that the movie doesn’t
work properly. Problem recognized.

The earlier a problem is discovered, the better. The process of writing code should
therefore be a constant ebb and flow of writing and testing—write a few lines,
export the movie, make sure the lines work as expected, then write a few more

,ch19.17636 Page 408 Monday, April 16, 2001 1:55 PM

Debugging Methodology 409

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

lines, export the movie, and so on. Make sure each component of a program
works on its own before testing the program as a whole. Try not to get carried
away writing a complex body of code without testing it frequently along the way.

Don’t assume your movie is perfect just because you can’t find any bugs on your
own. Always schedule time for external testing by target users, particularly if the
code you are delivering is part of a product or a service intended for a client. As
described earlier, implement error checking to head off possible problems with
incorrect data input. For example, if you write a function that expects an integer
argument, you might use the typeof operator to verify that the input parameters are
of the correct type. Also test end conditions such as extremely large, small, and
negative values, including zero.

Don’t underestimate the value of finding the minimum reproducible steps that rep-
licate the problem. These should be the fewest steps that recreate the error reli-
ably. A bug report such as, “I played it for an hour and then it froze” is not very
helpful. Useful bug reports include numbered steps such as:

1. Enter 0 for the number of years.

2. Click the Calculate button.

3. The results field shows “NaN” instead of a dollar amount.

Identifying the Source of a Bug

Once we’ve recognized a bug, our quest for a solution has only begun. Our first
task is to find the source of the bug, however far upstream that may be. A bug can
be thought of like a heart attack that was caused by bad dietary habits years ear-
lier. The heart attack is merely the most manifest symptom, but you must often
correct something earlier in the process. Most bugs are caused by false assump-
tions; we assume we’ve typed the name of a variable correctly but we haven’t, or
we assume a text field stores numeric data but it doesn’t. By executing a series of
trace() statements or using the Debugger or List Variables command, we can test
our assumptions against the interpreter’s understanding of our code.

Here, for example, is some code with a bug. It incorrectly sets status to “equal”:

var x = 11;
isTen(x);
function isTen(val) {
 if (val = 10) {
 status = "equal";
 }
}

,ch19.17636 Page 409 Monday, April 16, 2001 1:55 PM

410 Chapter 19: Debugging

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

To find out what’s wrong with the code, we compare what we think the code
should be doing against what it actually is doing, one step at a time:

// This should set x to 11
var x = 11;

// Let's see if it really does
trace(x); // Yup...this displays: 11

// This should invoke the isTen() function
isTen(x);

// Now on to our function
function isTen(val) {
 // Let's make sure our function is being called
 trace("isTen was called"); // Yup...this displays: "isTen was called"

 // Now let's make sure our parameter was passed correctly
 trace("val is " + val); // Yup...this displays: "val is 11"

Let’s pause here for a second. Notice what’s happened—we’ve made it most of the
way through our code and so far everything has worked as expected. Our vari-
able was set correctly; isTen() was called and received its argument properly.

Many errors occur because the code that you think is being exe-
cuted has never even been reached! We can use trace() statements
to verify that a particular portion of our code is reached.

By process of elimination, we already know that our code’s problem must lie
either in the conditional statement if(val = 10) or in the text field assignment
status = "equal". We next check our conditional statement by using trace() to
display the value of its test expression (we’re expecting either true or false):

 trace(val = 10);

Eureka! The Output window displays 10, not true or false as we had expected.

On closer inspection, we see that the test expression is an assignment statement,
not a comparison statement! We forgot an equal sign in our equality comparison
operator. The expression if(val = 10) should be if(val == 10).

Obviously, not all bugs are as simple as our conditional statement bug (which is
an exceedingly common error), but the approach we used is applicable to most
bug hunts: execute a series of trace() functions to create a running, step-by-step
report on the actual behavior of a movie’s code and use the Debugger as
explained in the Macromedia documentation.

,ch19.17636 Page 410 Monday, April 16, 2001 1:55 PM

Debugging Methodology 411

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Common Sources of Bugs

Table 19-1 lists some common sources of bugs in ActionScript.

Table 19-1. ActionScript Gotchas

Problem Description

Code in the wrong
place

All code must be attached to a movie clip, frame, or button.
Take care that your code is actually attached to what you
intend by observing the title of the Actions panel—when
attaching code to a frame, the Actions panel’s title reads Frame
Actions; when attaching code to a movie clip or button, the
Actions panel title reads Object Actions. If you want a script to
be on a particular frame, make sure that frame is selected in
the timeline before you start coding, and that there’s a key-
frame where you want to place your code. If you want a script
to be on a movie clip or button, make sure that object is
selected on stage before you start coding. Use the Movie
Explorer (Window ➝ Movie Explorer) to keep track of exactly
where code is attached.

Missing event handler Code attached to movie clips and buttons must be contained
by an event handler. For movie clips, use:
 onClipEvent (event) {
 // statements
 }
For buttons, use:
 on (event) {
 // statements
 }
where event is the name of the event to handle. The error,
“Statement must appear within on handler,” indicates that
you’re missing an event handler. See Chapter 10.

Bad movie clip
reference

A movie clip that doesn’t exist is referenced, or a reference to a
movie clip is malformed. Check that all instances are named,
and that instance names match the reference supplied. See
“Referring to Nested Instances” in Chapter 13 for information
on composing valid movie clip references.

Unexpected type
conversion

The result of a data conversion yields an unexpected result.
For example, 3 + "4" yields the string “34”, not the number 7.
Similarly, the string “true” converts to the Boolean value
false! Study type conversion rules in Chapter 3. Check
datatypes using the typeof operator.

Missing semicolon A statement ends prematurely because a semicolon is missing.
See Chapter 14 for proper semicolon usage.

Problem quotation
mark

A string includes an unescaped quotation character that inter-
feres with the string literal. See “String Literals” in Chapter 4.

Bad text field data
usage

A text field is treated as a number or other datatype, not a
string. User input in text fields is always a string value and
should be converted manually before being treated as any
other type.

,ch19.17636 Page 411 Monday, April 16, 2001 1:55 PM

412 Chapter 19: Debugging

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Fixing Bugs

In some cases, the fix for an identified bug is self-evident. For example, if we dis-
cover a bug caused by a missing quotation mark on a string, we fix the bug by
adding the quotation mark.

In more involved programs, fixing bugs can be a serious challenge. If a bug is
proving difficult to fix, consider the following:

• Don’t be afraid to rewrite code. In many cases the best way to fix overly com-
plicated code is to rearchitect the system and start from scratch. Recreating a
program nearly always goes faster and smoother than creating the program in
the first place. Most experts agree on this one (for example, Quake III was a
complete rewrite of the Quake II engine). That said, new code still needs to be
debugged. Don’t throw out perfectly good code close to a deadline. Keep
what’s good and rewrite only the problematic code.

• Break problematic components out into separate test movies. Work on each
aspect of a system in complete isolation, then integrate working sections one
at a time.

Scope problems A variable, property, clip, or function is referenced in the
wrong scope. For example, a statement in a clip handler
attempts to invoke a function scoped to that clip’s parent time-
line. See “Event Handler Scope” in Chapter 10, “Variable
Scope” in Chapter 2, and “Function Availability and Life Span”
in Chapter 9.

Global function versus
method confusion

Some global functions have the same name as movie clip
methods. Occasionally, this overlap causes problems. See
“Method versus global function overlap issues,” in Chapter 13.

Content not yet
loaded

A reference to a clip, property, function, or variable can’t be
resolved because the content is not yet loaded. Be sure all con-
tent is loaded by checking the MovieClip._framesloaded
property as shown in Part III.

Incorrect capitalization Some keywords are case sensitive in ActionScript. If you mis-
capitalize onClipEvent as onclipevent, ActionScript will think
you are trying to call a custom function named onclipevent
instead of using the built-in onClipEvent handler keyword. As
such, it will give you an error when it encounters the { at the
beginning of the onClipEvent statement block (it expects a
semicolon indicating the end of what it perceives to be an
onclipevent function call). See “Case Sensitivity” in Chapter 14.

Table 19-1. ActionScript Gotchas (continued)

Problem Description

,ch19.17636 Page 412 Monday, April 16, 2001 1:55 PM

Onward! 413

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• Have a peer review your code. Don’t be afraid. We’re all embarrassed by the
code we wrote a year earlier.

• Ask for help at one of the resources cited in Appendix A, Resources. For exam-
ple, the FlashCoders mailing list is devoted entirely to ActionScript questions.

For lots of good advice on programming techniques, see Extreme Programming
Explained by Kent Beck (Addison Wesley) and Code Complete by Steve McCon-
nell (Microsoft Press).

Onward!
Our ActionScript conversation is over, but yours has just begun. By reading Part I,
ActionScript Fundamentals and Part II, Applied ActionScript, you’ve learned to
speak ActionScript—now it’s time to apply that knowledge to your own projects.
Before you embark, here are a few parting thoughts:

• As with any art form, learning to program is a process not an event. For as long
as you program, you’ll learn more about programming. Consider the multiple-
choice quiz example from Chapters 1, 9, 11, and 13—we rebuilt it four times!
Each time we refined our approach, added features, and learned something we
hadn’t considered before. Just as each painting teaches the painter something
new about her subject matter, so creating and recreating applications will
reveal new approaches to you.

• There’s practical help in Part III, which contains detailed descriptions of
ActionScript’s built-in functions, properties, classes, and objects. While you
may not want to read it from start to finish, you should definitely skim each
topic so you have a sense of ActionScript’s capabilities.

• Revisit this book and Part III often. You’ll pick up new insights each time
through because you’ll be considering the information with a higher level of
understanding and will be able to relate concepts to real-world experiences.
Treat Part III as a dictionary and keep it by your side while you work.

• There’s a thriving community of Flash developers out there offering ideas and
solutions and—most importantly—sharing source code! Dissect as much as
you can. Identify the things you can’t understand and look those topics up in
this book. Macromedia maintains a list of web sites and mailing lists devoted
to Flash at http://www.macromedia.com/support/flash/ts/documents/flash_
websites.htm.

• Don’t limit your exploration of ActionScript to this book. Look at things from
multiple angles by consulting other sources of knowledge and inspiration,
such as those listed in Appendix A and the Preface. You’ll also find a long list

,ch19.17636 Page 413 Monday, April 16, 2001 1:55 PM

of Flash resources at http://www.moock.org/moockmarks and reviews of
worthwhile Flash books at http://www.moock.org/webdesign/books.

• Finally, remember to drop by the ActionScript Definitive Guide support site,
http://www.moock.org/asdg, for lots of code samples, tech notes, and discus-
sions of new topics.

With that, I wish you happy coding! Throw an extra iteration into a while loop for
me sometime. :)

,ch19.17636 Page 414 Monday, April 16, 2001 1:55 PM

