DRAFT, 10/07/00
DRAFT, 10/07/00

C

Backwards Compatibility

Flash allows you to create .swf files in a format that is compatible with previous versions of the Player. By the time you read this, the majority of users will have at least version 5 of the Flash plug-in, but you may prefer to author for Flash 4 instead. Even if you are authoring exclusively for Flash 5, this appendix will help you avoid using deprecated ActionScript and bring you up to speed on the preferred methods in Flash 5. For statistics on the distribution of various Flash Player versions, see:

http://www.macromedia.com/software/flash/survey/whitepaper/

When authoring for Flash 4, use the deprecated techniques (i.e. those that are outdated, but supported for backwards compatibility) listed in Table C-1. See also “Using Flash 5 to Create Flash 4 Content” under “Writing Scripts with ActionScript” in Macromedia’s Flash ActionScript Reference Guide.

To run scripts in the Flash 4 Player you must set the Version of your .swf file to Flash 4 under the Flash tab under File(Publish Settings. All code is disabled if you attempt to run a Flash 5 or later .swf file in the Flash 4 Player.

Table C-1 summarizes key backwards compatibility issues and differences between Flash 4 ActionScript and Flash 5 ActionScript.

Table C-1: Backwards Compatibility Issues

Topic
Description

Creating Variables
Flash 4’s set function has been replaced by the var statement. To create dynamically-named variables, use eval, or (more appropriately) use arrays to manage your data. See Chapter 11, Arrays.

Variable and Timeline References
The Flash 4-style slash-colon constructions (/square:area) have been superceded by dot notation (square.area). See Table 2-1.

String Comparison Operators
The Flash 4 string comparison operators—eq, ne, ge, gt, le, lt—have been superceded by the following operators in Flash 5: +, ==, !=, >=, >, <=, <. See Table 4-2.

String Concatenation Operator
When creating Flash 4 content in Flash 5 or later, use the add operator instead of Flash 4’s & operator. When authoring for Flash 5, use the + operator for string concatenation. See Table 4-2.

String Length
Flash 4’s length function (e.g., length(myString)) has been superceded by the length property (e.g., myString.length). See Table 4-2.

Substring Extraction
Flash 4’s substring function (e.g., substring(myString, 1, 3)) has been superceded by the substring, substr, and slice methods. Note that substring differs in Flash 4 and Flash 5. See Table 4-2.

Character Code Point Functions
Flash 4’s chr and mbchr functions (used to create a character from a code point) have been superceded by String.fromCharCode. Flash 4’s ord and mbord functions (used to determine the code point of a character) have been superceded by the String.charCodeAt method. See Table 4-2.

Data Type Conversion
When importing Flash 4 files, Flash 5 automatically inserts the Number function around any numeric data that is used as an operand of the following potentially ambiguous operators: +, ==, !=, <>, <, >, >=, <=. See Table 3-5.

The ifFrameLoaded Statement
Flash 3’s ifFrameLoaded has been officially deprecated (i.e., still works, but is considered obsolete). Use the _totalframes and _framesloaded MovieClip properties to create preloading code.

Infinite Loops
Flash 4 allowed a maximum of 200, 000 loop iterations. Flash 5 allows 15 seconds for loops, after which it warns users that the movie has stopped responding. See “Maximum Number of Iterations” in Chapter 8, Loop Statements.

Subroutines versus Functions
In Flash 4, a subroutine could be created by attaching a block of code to a frame with a label and executing it using the call statement. Flash 5’s functions replace Flash 4’s subroutines.

Clip Events
Flash 4 supported only button events (i.e. functions starting with on() as shown in Table 10-1. Clip events (i.e. onClipEvent()) cannot be used in the Flash 4 player.

Capturing Keystrokes
In Flash 4, keyPress was the only means of capturing keystrokes. In Flash 5 and later, the Key object, in combination with the movie clip events keyDown and keyUp, offers much greater control over keyboard interaction.

Tell Target Deprecated
Flash 4’s Tell Target (used to control remote movie clips) has been replaced by properties and methods accessed using dot notation and the with statement. See Chapter 13.

Get Property Deprecated
Flash 4’s command Get Property is no longer required for movie clip property access. Use the dot operator instead. See Chapter 13.

int Deprecated
Flash 4’s int function (used to trim the floating point off an integer) has been superceded by Math.floor, Math.ceil, and Math.round.

Random number generation
Flash 4’s random function (used to generate a random number) has been superceded by Math.random. Note that due to a bug in version 30 of the Flash 5 Player, Math.random occasionally returns 1.0 as a random value whereas later builds do not. See Example R-10.

toggleHighQuality Deprecated
Flash 4’s toggleHighQuality function (used to set the rendering quality of the player) has been superceded by the global _quality property.

_highquality Deprecated
Flash 4’s _highquality property has been superceded by the global _quality property.

Math Object Support in Flash 4
The functions and properties of the Math object (e.g., Math.cos, Math.PI) are not natively supported by the Flash 4 player. The values, however, are approximated when a movie is exported in Flash 4 format.

loadMovie versus loadMovieNum
Flash 3’s loadMovie onto a numbered level is superceded by Flash 5’s loadMovieNum (which accepts an integer level argument). Flash 4’s loadMovie into a target movie clip is still available as loadMovie in Flash 5.

Printing
Flash 5 supports the native print function, which was only available in Flash 4 build 20 and above as a modified Get URL Action.

Objects and Classes not supported.
Flash 4 does not support any of Flash 5’s built-in objects and classes.

Updates to the Flash 5 Player, Build 41

The following list summarizes the major changes that were made in build 41 (Netscape) and 42 (Internet Explorer) of the Flash 5 Player. (The previous public build was 30, released with the Flash 5 authoring tool).

· I-beam in text fields takes on color of text.

· Movies in a table cell do not cause Internet Explorer 5.5 to crash.

· A text field’s scroll position does not reset when field content is modified.

· Text fields with embedded fonts do not leak outside their visual boundary when scrolled.

· XML.contentType property added.

· XML.ignoreWhite property added.

· When XML source is parsed and the characters &, ', ", <, and > appear in a text node, they are converted to the following entities: &, ', ", >, <. This conversion is transparent in Flash because the entities are converted back to characters when an XML object is converted to a string; however, the entities will show up in XML source sent to the server.

· Math.random does not return the value of 1.

· General performance improvements, especially on Windows 98.

Controlling Movie Clips

In Chapter 13, Movie Clips, we learned how to control clips using Flash 5 and later techniques. Here we consider the equivalent Flash 4 techniques.

Previous to Flash 5, we would execute special Movie Clip Actions to control a Movie Clip. We would say “Tell the clip named eyes to play,” using the following:

Begin Tell Target ("eyes")

Play

End Tell Target

But in Flash 5 and later, movie clips can be controlled more directly, through built-in methods. For example:

eyes.play();

Similarly, to access the built-in properties of a movie clip prior to Flash 5, we would use explicit property-getting and property-setting commands, such as:

GetProperty ("ball", _width)

Set Property ("ball", X Scale) = 90

As of Flash 5, we can retrieve and set a movie clip’s properties using the dot operator, just as we would access the properties of any object:

ball._width;

ball._xscale = 90;

Prior to Flash 5, to access variables inside a movie clip, we used a colon to separate the clip name from the variable name:

Set Variable: "x" = myClip:myVariable

As of Flash 5, a variable in a movie clip is simply a property of that clip object, so we now use the dot operator to set and retrieve variable values:

myClip.myVariable = 14;

x = myClip.myVariable;

Finally, before Flash 5, we would access nested levels of movie clips using a directory-tree metaphor of slashes and dots:

clipA/clipB/clipC

../../../clipC

Because movie clips are object-like data in Flash 5 and later, we can now store one clip as a property of another clip. We, therefore, use the dot operator to access so-called nested clips, and we use a clip’s reserved _parent property to refer to the clip that contains it:

clipA.clipB.clipC;

_parent._parent._parent.clipC;

PAGE
3

